Summery
ハードウェアの情報を表示する
PCIにつながっているデバイスを表示する
Construction
$ lspci [option]
Option
-v : 各デバイスの詳細な情報を表示
-vv : PCIデバイスの詳細な情報を表示
-t : tree表示
-k : デバイスのカーネルを表示
-x : hex情報で表示
-n : ID番号の表示
--help : HELP
Sample
# CPU,VGA,USB,NIC,SATA,AUDIO,PCIのデバイスを表示
$ lspci
00:00.0 Host bridge: Intel Corporation 4th Gen Core Processor DRAM Controller (rev 06)
00:01.0 PCI bridge: Intel Corporation Xeon E3-1200 v3/4th Gen Core Processor PCI Express x16 Controller (rev 06)
00:02.0 VGA compatible controller: Intel Corporation 4th Generation Core Processor Family Integrated Graphics Controller (rev 06)
00:03.0 Audio device: Intel Corporation Xeon E3-1200 v3/4th Gen Core Processor HD Audio Controller (rev 06)
00:14.0 USB controller: Intel Corporation 9 Series Chipset Family USB xHCI Controller
00:16.0 Communication controller: Intel Corporation 9 Series Chipset Family ME Interface #1
00:19.0 Ethernet controller: Intel Corporation Ethernet Connection (2) I218-V
00:1a.0 USB controller: Intel Corporation 9 Series Chipset Family USB EHCI Controller #2
00:1b.0 Audio device: Intel Corporation 9 Series Chipset Family HD Audio Controller
00:1c.0 PCI bridge: Intel Corporation 9 Series Chipset Family PCI Express Root Port 1 (rev d0)
00:1c.3 PCI bridge: Intel Corporation 82801 PCI Bridge (rev d0)
00:1d.0 USB controller: Intel Corporation 9 Series Chipset Family USB EHCI Controller #1
00:1f.0 ISA bridge: Intel Corporation 9 Series Chipset Family Z97 LPC Controller
00:1f.2 SATA controller: Intel Corporation 9 Series Chipset Family SATA Controller [AHCI Mode]
00:1f.3 SMBus: Intel Corporation 9 Series Chipset Family SMBus Controller
03:00.0 PCI bridge: ASMedia Technology Inc. ASM1083/1085 PCIe to PCI Bridge (rev 04)
Discription
NAME
lspci - list all PCI devices
SYNOPSIS
lspci [options]
DESCRIPTION
lspci is a utility for displaying information about PCI buses in the system and devices con‐
nected to them.
By default, it shows a brief list of devices. Use the options described below to request
either a more verbose output or output intended for parsing by other programs.
If you are going to report bugs in PCI device drivers or in lspci itself, please include out‐
put of "lspci -vvx" or even better "lspci -vvxxx" (however, see below for possible caveats).
Some parts of the output, especially in the highly verbose modes, are probably intelligible
only to experienced PCI hackers. For exact definitions of the fields, please consult either
the PCI specifications or the header.h and /usr/include/linux/pci.h include files.
Access to some parts of the PCI configuration space is restricted to root on many operating
systems, so the features of lspci available to normal users are limited. However, lspci tries
its best to display as much as available and mark all other information with <access denied>
text.
OPTIONS
Basic display modes
-m Dump PCI device data in a backward-compatible machine readable form. See below for
details.
-mm Dump PCI device data in a machine readable form for easy parsing by scripts. See below
for details.
-t Show a tree-like diagram containing all buses, bridges, devices and connections between
them.
Display options
-v Be verbose and display detailed information about all devices.
-vv Be very verbose and display more details. This level includes everything deemed useful.
-vvv Be even more verbose and display everything we are able to parse, even if it doesn't
look interesting at all (e.g., undefined memory regions).
-k Show kernel drivers handling each device and also kernel modules capable of handling
it. Turned on by default when -v is given in the normal mode of output. (Currently
works only on Linux with kernel 2.6 or newer.)
-x Show hexadecimal dump of the standard part of the configuration space (the first 64
bytes or 128 bytes for CardBus bridges).
-xxx Show hexadecimal dump of the whole PCI configuration space. It is available only to
root as several PCI devices crash when you try to read some parts of the config space
(this behavior probably doesn't violate the PCI standard, but it's at least very
stupid). However, such devices are rare, so you needn't worry much.
-xxxx Show hexadecimal dump of the extended (4096-byte) PCI configuration space available on
PCI-X 2.0 and PCI Express buses.
-b Bus-centric view. Show all IRQ numbers and addresses as seen by the cards on the PCI
bus instead of as seen by the kernel.
-D Always show PCI domain numbers. By default, lspci suppresses them on machines which
have only domain 0.
Options to control resolving ID's to names
-n Show PCI vendor and device codes as numbers instead of looking them up in the PCI ID
list.
-nn Show PCI vendor and device codes as both numbers and names.
-q Use DNS to query the central PCI ID database if a device is not found in the local
pci.ids file. If the DNS query succeeds, the result is cached in ~/.pciids-cache and it
is recognized in subsequent runs even if -q is not given any more. Please use this
switch inside automated scripts only with caution to avoid overloading the database
servers.
-qq Same as -q, but the local cache is reset.
-Q Query the central database even for entries which are recognized locally. Use this if
you suspect that the displayed entry is wrong.
Options for selection of devices
-s [[[[<domain>]:]<bus>]:][<slot>][.[<func>]]
Show only devices in the specified domain (in case your machine has several host
bridges, they can either share a common bus number space or each of them can address a
PCI domain of its own; domains are numbered from 0 to ffff), bus (0 to ff), slot (0 to
1f) and function (0 to 7). Each component of the device address can be omitted or set
to "*", both meaning "any value". All numbers are hexadecimal. E.g., "0:" means all
devices on bus 0, "0" means all functions of device 0 on any bus, "0.3" selects third
function of device 0 on all buses and ".4" shows only the fourth function of each
device.
-d [<vendor>]:[<device>]
Show only devices with specified vendor and device ID. Both ID's are given in hexadeci‐
mal and may be omitted or given as "*", both meaning "any value".
Other options
-i <file>
Use </file><file> as the PCI ID list instead of /usr/share/misc/pci.ids.
-p </file><file>
Use </file><file> as the map of PCI ID's handled by kernel modules. By default, lspci uses
/lib/modules/kernel_version/modules.pcimap. Applies only to Linux systems with recent
enough module tools.
-M Invoke bus mapping mode which performs a thorough scan of all PCI devices, including
those behind misconfigured bridges, etc. This option gives meaningful results only with
a direct hardware access mode, which usually requires root privileges. Please note
that the bus mapper only scans PCI domain 0.
--version
Shows lspci version. This option should be used stand-alone.
PCI access options
The PCI utilities use the PCI library to talk to PCI devices (see pcilib(7) for details). You
can use the following options to influence its behavior:
-A <method>
The library supports a variety of methods to access the PCI hardware. By default, it
uses the first access method available, but you can use this option to override this
decision. See -A help for a list of available methods and their descriptions.
-O <param />=<value>
The behavior of the library is controlled by several named parameters. This option
allows to set the value of any of the parameters. Use -O help for a list of known
parameters and their default values.
-H1 Use direct hardware access via Intel configuration mechanism 1. (This is a shorthand
for -A intel-conf1.)
-H2 Use direct hardware access via Intel configuration mechanism 2. (This is a shorthand
for -A intel-conf2.)
-F <file>
Instead of accessing real hardware, read the list of devices and values of their con‐
figuration registers from the given file produced by an earlier run of lspci -x. This
is very useful for analysis of user-supplied bug reports, because you can display the
hardware configuration in any way you want without disturbing the user with requests
for more dumps.
-G Increase debug level of the library.
MACHINE READABLE OUTPUT
If you intend to process the output of lspci automatically, please use one of the machine-
readable output formats (-m, -vm, -vmm) described in this section. All other formats are
likely to change between versions of lspci.
All numbers are always printed in hexadecimal. If you want to process numeric ID's instead of
names, please add the -n switch.
Simple format (-m)
In the simple format, each device is described on a single line, which is formatted as parame‐
ters suitable for passing to a shell script, i.e., values separated by whitespaces, quoted and
escaped if necessary. Some of the arguments are positional: slot, class, vendor name, device
name, subsystem vendor name and subsystem name (the last two are empty if the device has no
subsystem); the remaining arguments are option-like:
-rrev Revision number.
-pprogif
Programming interface.
The relative order of positional arguments and options is undefined. New options can be added
in future versions, but they will always have a single argument not separated from the option
by any spaces, so they can be easily ignored if not recognized.
Verbose format (-vmm)
The verbose output is a sequence of records separated by blank lines. Each record describes a
single device by a sequence of lines, each line containing a single `tag: value' pair. The tag
and the value are separated by a single tab character. Neither the records nor the lines
within a record are in any particular order. Tags are case-sensitive.
The following tags are defined:
Slot The name of the slot where the device resides ([domain:]bus:device.function). This tag
is always the first in a record.
Class Name of the class.
Vendor Name of the vendor.
Device Name of the device.
SVendor
Name of the subsystem vendor (optional).
SDevice
Name of the subsystem (optional).
PhySlot
The physical slot where the device resides (optional, Linux only).
Rev Revision number (optional).
ProgIf Programming interface (optional).
Driver Kernel driver currently handling the device (optional, Linux only).
Module Kernel module reporting that it is capable of handling the device (optional, Linux
only).
New tags can be added in future versions, so you should silently ignore any tags you don't
recognize.
Backward-compatible verbose format (-vm)
In this mode, lspci tries to be perfectly compatible with its old versions. It's almost the
same as the regular verbose format, but the Device tag is used for both the slot and the
device name, so it occurs twice in a single record. Please avoid using this format in any new
code.
FILES
/usr/share/misc/pci.ids
A list of all known PCI ID's (vendors, devices, classes and subclasses). Maintained at
http://pciids.sourceforge.net/, use the update-pciids utility to download the most
recent version.
/usr/share/misc/pci.ids.gz
If lspci is compiled with support for compression, this file is tried before pci.ids.
~/.pciids-cache
All ID's found in the DNS query mode are cached in this file.
BUGS
Sometimes, lspci is not able to decode the configuration registers completely. This usually
happens when not enough documentation was available to the authors. In such cases, it at
least prints the < ?> mark to signal that there is potentially something more to say. If you
know the details, patches will be of course welcome.
Access to the extended configuration space is currently supported only by the linux_sysfs
back-end.
SEE ALSO
setpci(8), update-pciids(8), pcilib(7)
AUTHOR
The PCI Utilities are maintained by Martin Mares <mj @ucw.cz>.
pciutils-3.2.1 10 November 2013 lspci(8)
0 件のコメント:
コメントを投稿